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DATA STRUCTURE AND NON-LINEAR EFFECTS IN ADAPTIVE FILTERS 
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Abstract: The non-linear effects that have been observed in adaptive filtering scenarios arc explained from the point of 
view of the structure that underlies the desired data. While the model structure used by the conventional adaptive filter is 
a linear combination of lapped-dclay line signals, that adaptive filter model does not generally correspond to the 
structure that best describes the desired data one is adapting to. The nonlinear effects in adaptive noise canceling, 
interference contaminated adaptive equalization, and adaptive linear prediction arc explained here as being the result of 
forcing a filter model onto an essentially different data structure. The tapped delay line model can then only be 
compatible with the data if the filter weights become time-varying. If the adaptation captures the time-varying weight 
behavior, the adaptive filter performance can approach that associated with the data structure and thereby exceed the 
best performance associated with the corresponding conventional Wiener filter. 

1. INTRODUCTION 

Non-linear effects have been observed in several 
adaptive filter (AF) applications, usually at larger 
stepsizes and involving narrowband processes. Non- 
linear effects in adaptive noise canceling (ANC) [1], 
interference contaminated adaptive equalization (AEQ) 
[2), and adaptive linear prediction (ALP) [3] have been 
reported and analyzed previously. The origin of the 
nonlinear effects in ANC was studied recently (4J. The 
explanations depend on the existence of an underlying 
data structure that can produce performance well in 
excess of the performance associated with the optimal 
conventional tapped-delay line structure Wiener filter, 
which is time-invariant in the reported scenarios. When 
the tapped delay line structure is used in an AF context 
its weights can be time-varying. The fundamental 
mechanism, by which the weights adapt to the data 
structure, is through the error feedback, as Ihc error 
reflects instantaneously the discrepancy between the 
structure of the data and its modeled behavior. The AF 
may capture some of the structure that underlies the data 
and exhibit improved performance. 

2. NLMS ADAPTATION & MODELING 

The nonlinear effects in adaptive filtering were 
observed when using the Icast-mcan-square (LMS) 
algorithm and its normalized (NLMS) form. We focus 
here on using the NLMS algorithm, in which the error 
signal is computed by subtracting the desired signal 
estimate (the AF output, computed as a weighted linear 
combination of all its inputs) from the desired signal. 

en - dn -dl: (1) 

rf„=w"ll„ (2) 

The error signal is used to correct the weight vector. 

w» + V' (3) 

While NLMS can be applied as given, its properties 
depend on the structure, or model, for the desired data. 
While we know the model that underlies the estimate 
provided by the adaptive filter, as given in (2), most 
often we do not know the structure that underlies the 
desired data. A common assumption is that the desired 
signal itself has the same linear structure as that used for 
the filter estimate, for some ideal Set of constant 
weights, with perhaps some added white noise. 

d  =w°ii   +F. (4) 

Under these assumptions the Ah" weights converge to the 
true weights, or a neighborhood about the true weights 
determined hy the additive white noise, and the NLMS 
performance - in terms of MSE - approaches the 
variance of the additive white noise from above 
(depending on the excess MSE, which vanishes as the 
stepsize parameter fi vanishes). The structure that 

underlies the data, as assumed in (4), is not necessarily 
what actually generated the data. If the model assumed 
in (2) is correct, hut its order is too low, (his forces part 
of the data to be modeled hy the additive noise and/or 
lime-varying weight behavior. If the model assumed in 
(2) is correct, but the additive noise in (4) is colored, it 
is possible lo get a MSli smaller than the variance of the 
additive noise due to a biased parameterization. So far 
wc have assumed that the structure underlying the data 
in (4) is time-invariant (Tl). [f the true weight vector in 
(4) is time-varying (TV), the MSB consists of a tracking 
error component in addition to the estimation error 
component. 

Any TV behavior of the weight in (4) is immediately 
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reflected in the desired signal and, therefore, in the error 
signal. At large stepsrzes this effects an instantaneous 
change in the a posteriori weight vector reflecting the 
discrepancy between the data structure (actual) and its 
tapped delay line filter model (assumed). We show that 
nonlinear effects can arise when forcing the tapped 
delay line adaptive filter model onto more general data 
structures. 

3.2-CHANNELNLMS 

The input vector  UB  used in (2) usually contains 

tapped-dclay line values based on a single reference 
channel. For the purpose of revealing underlying data 
structures we assume a more general adaptive filter 
structure, where the input vector contains delay line 
values from the reference channel as well as from the 

auxiliary channel, in r, and Xn respectively. 

(5) 

This definition renders (T)-(3) into a 2-channel NLMS 
adaptive filter, as reflected in Tig. 1. 

Fig. 1: Basic 2 Channel NLMS Filler. 

In the conventional NLMS adaptive filter, the input 
vector does not contain the auxiliary vector partition 
directly, hut some access to that data is provided in the 
form of the error signal (based on the desired data) 
which is used in the weight updates. 

4. VARIOUS 2-CHANNEL SCENARIOS 

We now look at the ANC, AEQ, and ALP scenarios 
from the 2-channel point of view. Depending on the 
particular scenario, the auxiliary channel is chosen to 
reflect the underlying structure of the data. Note that 
NLMS using (5) implies the data can be represented as 
in (4), using the 2-channel input. The latter has been 
verified by applying 2-channel NLMS and observing 
that both the weights and MSL performance approach 
those of the corresponding optimal TI Wiener filler. 

4.1. ANC 
In the conventional ANC scenario the desired signal 

estimate is derived from present and past values of the 

reference signal. It is beneficial to also use past values 
of (he desired signal [4], Consequently, the appropriate 
2-channel ANC scenario uses past values of the desired 
signal for the auxiliary channel, as reflected in Fig. 2. 

AF, 

Fig. 2: 2-Channcl ANCScenario. 

In the conventional ANC scenario, the reference process 
carries information about the desired process because of 
correlation. In the 2-channcl case Ihc past of the desired 
signal is similarly expected to carry additional 
information about its immediate future. 

4.2. AEQ 
The 2-channel AF.Q scenario is depicted in Fig. 3. 

Fig. 3: 2-Channel AEQ Scenario. 

In the conventional interference-contaminated AF.Q 
scenario, the adaptive filter derives an estimate of the 

training  sequence   sample   Sn_0   from  the  reference 

i~n ~ .v„ + /  + nn ,  an  interference and measurement 

noise contaminated signal. Strong narrowband 
interference can be predicted quite well from its past 
values, so that having the interference channel as the 
auxiliary channel coultl be beneficial. 

An approximation lo this 2-channel structure could be 
implemented by using the reference input to provide an 
estimate for the interference signal. 

4.3. ALP 
In the conventional adaptive linear predictor the 

reference input consists of past values - delayed by one 
or more samples - of the process to be predicted. In the 
2-channel version the auxiliary channel consists of the 
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immediate past values of the process to he predicted. 

z-] Eflgljl 

r z'h 

1 
s„ 

f    , 
Fig. 4: 2-Channel ALP Scenario. 

For white additive noise conditions the onc-stcp 
predictor exhibits the best performance, but when the 
additive noise is correlated, it can be desirable lo 
increase the delay in order to decorrelatc the additive 
correlated noise component. 

Recall that the main purpose of defining the above 2- 
channcl scenarios is to reveal the structure underlying 
the desired signal in each case. In the ANC scenario, the 
auxiliary channel - the past of the desired signal - is 
actually available for use in a 2-channel approach. In the 
AEQ and Al.P scenarios, the auxiliary channel - the 
interference signal and the immediate past of the signal 
to be predicted, respectively - is not measurable. 

5. EQUIVALENT CONVENTIONAL FORM 

As argued in Section 4, we start with the time- 
invariant 2-channel structure for the desired process. 

d =w"u. +e. 

•d" +£„ 

+ £. (6) 

When the conventional adaptive filter is used, with 
only the reference input channel, the underlying model 
to be estimated is of the following restricted form. 

d, + e 
i.-'.i 

To sec what happens when the data structure that 
underlies the desired process, as in (6), is forced onto 
the model used in conventional Nl.MS, as in (7), we use 
the device of linking sequences.  The linking sequence 

the P„_/ expresses instantaneous    connection 

between the elements .(„_„, and r^,, of the auxiliary 

and reference channel respectively. 

PZ"": 
v„ ;M-«>*/> 

(8) 

Consequently, the 2-channel structure in (6) can be 
rewritten in terms of the conventional model of (7). For 
example, supposing that the auxiliary channel has a 

single element   Xn, this element can  be rewritten in 

terms   of   the   reference   channel   element    r        as 

P„m.m
r„-m • Using this substitution in (6) yields: 

•k P:::, + £.. 
C>) 

:(»'>r-i«i'.,+wr"K+e„ 
where 1 m+| is an indicator vector of all zeros except for 

a I as the (m+l)st clement Any choice for the latter 
location is equally valid, and any afTine linear 
combination of such solutions is equally valid. The 
overall linear combination of these structures describes 
the manifold of solutions in which the a posteriori 
conventional NLMS weight vector resides. 

Note that the structure in (9), rewritten in the form of 
the conventional structure, has the same - usually small 
- additive noise as the data structure in (6). However, 
even if the data structure in (6) has Tl coefficients, its 
conventional model equivalent in (9) generally has time- 
varying coefficients, due to the presence of the linking 

sequence p •   • In the manifold a linear combination of 

/  (•») V'"1 

the linking sequences  y>„ „, jm 0   would be present, 

where M refers to the total number of elements in the 
reference vector. For any linear combination, the weight 
behavior in the equivalent conventional structure is 
determined by the behavior of the linking sequences. As 
we will show next, the specific naiure of the linking 
sequences varies with the application scenarios given in 
Section 4. 

5.1. ANC: Linking Result 
In the ANC application for which nonlinear effects- 

have been reported the desired and reference processes 
are both narrowband AR(I), and centered at different 
frequencies. The linking sequences behave as follows. 

P1:I=- 
d. 

/V'.-2+f. 

Prr, + V.. 
(10) 

H +v. 

Note that for narrowband processes the pole radii are 
close to one, so that - away from the zero-crossings of 
the reference process - (10) implies that (9) contains a 
weight vector component that rotates with the difference 
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frequency of the desired and reference processes. In the 
manifold of solutions consecutive elements of the weight 
vector contain different linking sequences that are 
related as follows. 

p;:;v, 

p,rn_m +V„_ 
(II) 

' p["-l, + v„ 
Note that neighboring weights are rotated (with random 
perturbation) based on the reference process center 
frequency. These weight behaviors correspond to the 
original description of the heterodyning operation [51. 

5.2. AEQ Linking Result 
In the AEQ application, the auxiliary channel consists 

of   (,,_„    and   the   reference   process   consists   of 

consecutive elements centered about rn_D . The linking 

sequences then behave as follows. 

by dependence on NLMS stepsize. We have shown that 
the conventional structure equivalent of the data exhibits 
weight behavior that is nearly deterministically time- 
varying (ANC) or subject to random drift (AEQ and 
ALP). NLMS adaptation implies the attempted tracking 
of the stnicture underlying the data and, depending on 
the measure of success in doing so, some fraction of the 
potential performance gain (determined by the structure 
of the desired data) may he realized. 

6. CONCLUSIONS 

The nonlinear effects that occur in adaptive filtering 
are explained by investigating what happens when the 
conventional tapped delay line model is forced upon the 
multi-channel structure that underlies the data. When the 
data stnicture does not correspond to a lime-invariant 
version of the model used in Ihc adaptive filter, the 
constrained structure becomes time-varying and an 
adaptive filter may be able to partially track that time- 
varying nature. The latter explains how an adaptive filter 
can outperform the corresponding time-invariant Wiener 
filter when both use the conventional tapped delay line 
model. 

(O-l) 
K..-/H/ 

PX + 1),-D 
(12) 

Where the interference process dominates the noise and 
signal processes, the linking sequence produces in 
neighboring weights a rotation with magnitude nearly 
one and phase equal to the center frequency of the 
interference process. The lime dependent behavior of 
the linking sequence lies in the additive noise term of 
the last line in (12), so that the TV aspect of the 
corresponding weight in (9) is a random drill. 

5.3. ALP Linking Result 
The ALP scenario linking sequences behave as: 

P„-l,=- 
d„.t 

+ *?„- 
+ S 

PA 
>«V(AMl 

+ n 
(13) 

+ V 

In the manifold, the consecutive weight vector element 
portion that comes from projecting the interference 
signal onto the reference dimension undergoes a 
complex rotation, subject to additive noise. Only the 
random aspect produces time-varying weight behavior. 

The nonlinear effects observed in ANC, AEQ, and 
ALP [1-4] are cliaracterized by performance that is 
better than that for the conventional Wiener filter, and 

REFERENCES 

[1] M. Rcuter and J. R. Zeidler, Nonlinear effects in 
LMS adaptive equalizers, IEEE Trans. Signal 
Processing, 47, 1570-1579, June 1999. 

[2] M. Reuter, K. Quirk, J. Zeidler, and L. Milstein, 
Nonlinear effects in I.MS adaptive fillers, Proe. 
Symp. 2000 on Adaptive Systems for Signal 
Processing, Communications and Control, 141-146, 
Lake Louise, Alberta, October 2000. 

[3] I. Man, J. R. Zeidler, and W. H. Ku, "Nonlinear 
Effects of the LMS Predictor for Chirped Input 
Signals," EURASIP Journal of Applied Signal 
Processing, Special Issue on Nonlinear Signals and 
Applications, Part II, January 2002. 

[4]   A.     A.    (Louis)    ricex    and    James    R.    Zeidler, 
"Nonlinear Effects in Adaptive Filters," in 
Advances in LMS Adaptive Filters, eds. S. Haykin 
and 13. Widrow, John Wiley & Sons, 2002. 

[5] J. R. Glover, "Adaptive noise canceling applied to 
sinusoidal interference," IEEE Trans on Acoustics, 
Speech and Signal Processing, ASSP-25, 484-491, 
Dec. 1977. 

Acknowledgement 

The present work was funded by the Independent 
Laboratory Research Program at SPAWAR Systems 
Center, San Diego, and - in part - by the National 
Research Council, when the first author was a Senior 
Research Associate at SPAWAR Systems Center, San 
Diego, while on sabbatical from Virginia Tech. 

DSP 2002 - 662 


